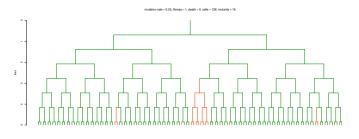
# Modèles de mutation : étude probabiliste et estimation paramétrique Package R flan (FLuctuation ANalysis)

A.Mazoyer, S.Despréaux, B.Ycart

Rencontres R 2015


#### Plan

- Modèles de mutations
- Estimation paramétrique
- Se Fonctionnalités du package flan
- 4 À venir...

## Modèles de mutations

## **Principes**

- Croissance d'une population de cellules avec mutations.
- Nombreuses divisions et peu de mutations.
- Une mutation = développement d'un clone.
- Observation du nombre final de cellules (total et mutantes).



## Motivations

```
N_{\mathsf{mut}}
   1.36e9
       1.05e9
 3
       4.28e8
 0
 0
       6.24e8
 5
       7.36e8
 6
       4.90e8
 110
       1.36e9
       9.56e8
 0
       6.82e8
```

Paramètres d'intérêt :

 $\rightarrow \pi$ : Probabilité de mutation

 $\rightarrow \alpha$ : Nombre moyen de mutations

ightarrow 
ho : "Fitness"

. . .

## Méthodes d'estimation

Expressions explicites des probabilités ⇒ Maximum de Vraisemblance (ML).

#### Obstacle numérique

Présence de "jackpots" (influencé par  $\rho$ ):

```
1 2 131 4 1 8480 3 23900 10 8 338 2 5 71 0 25 2 23 7
11 46 1 0 11 13 4 <mark>2324</mark> 0 4 6 6 4 1 1 1 5 65 14 5 4 1
                   1 4 1 7 6 5 6 37 2
```

#### Winsorization

1 3 16 3 7 2 4 5 1 8 1 1 16 1216 1 1432 5 12 4 0 1 3 16 3 7 2 4 5 1 8 1 1 16 1000 1 1000 5 12 4 0

# Méthodes d'estimation

#### Méthode $p_0$ (P0)

#### Principe:

- ① (0 mutantes) relié à (0 mutations).
- ② Décompte du nombre de 0.
- **3** Estimation de  $\mathbb{P}[0 \ mutantes]$ .
- Estimation de  $\pi$ .

#### Inconvénients

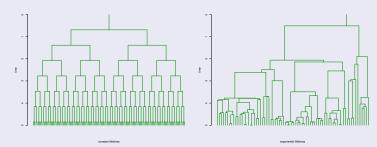
- Nécessite présence de 0.
- Estimation de  $\rho$  par Max de Vraisemblance.

## Méthodes d'estimation

Mélange poissonnien  $\Rightarrow$  estimation à l'aide de la fonction génératrice (GF).

#### Intérêts

- Temps de calcul très faible.
- Plus stable que ML.
- Initialisation de ML (aide à la stabilité).


## Sources de biais

Nécessité d'identifier les sources de biais et de corriger les estimations.

#### Sources de biais

- Modèle de croissance des clones.
- Présence de morts cellulaires.
- Fluctuations de  $N_f$ .

#### Modèle de croissance des clones



- Influence les estimations.
- Problème : le vrai modèle est inconnu
- Hypothèse d'estimation : le modèle est soit exponentiel (E), soit Dirac (D).

## Source de biais : morts cellulaires

#### **Impact**

- ullet À chaque division : probabilité  $\delta$  de mourir sans se diviser.
- Mêmes méthodes d'estimation si  $\delta$  est connu.
- ullet Complications si  $\delta$  est inconnu.

## Source de biais : fluctuation de $N_f$

#### **Impact**

- Si  $N_f$  constant :  $\hat{\pi} = \frac{\hat{\alpha}}{N_f}$ .
- ullet Si  $N_f$  aléatoire : influence de  $\dfrac{\mathbb{E}[N_f]}{sd[N_f]}$  sur  $\hat{\pi}.$

## Fonctionnalités du package flan

#### Simulation: rmut, pmut, qmut

- Mêmes fonctionnalités que rnorm, pnorm, qnorm.
- Hypothèses possibles de construction :
  - Durées de vie non-exponentielles.
  - Morts cellulaires.
  - Fluctuation de  $N_f$ .

## Fonctionnalités du package flan

#### Estimation: mutestim, mutintestim

- Renvoie :
  - Estimations de  $\pi$  et  $\rho$ .
  - Estimations des écart-types des estimateurs.
  - Intervalles de confiance.
- Hypothèses d'estimation disponibles :
  - Durées de vie exponentielles ou constantes.
  - Morts cellulaires.
  - Fluctuations de  $N_f$ .

## À venir...

## Futurs ajouts/améliorations

- Ajout de fonctionnalités avec l'avancement de la thèse (simulation/estimation).
- Estimation du paramètre de mort (?).
- ullet Amélioration du débiaisage lorsque  $N_f$  est aléatoire.
- Ajout d'une fonction de test sur un échantillon.
- Déduire directement la méthode d'estimation à employer selon l'échantillon :



Fonctionnalités du package flan

Modèles de mutations

Merci! Des questions?